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On the Jump Dynamics and Jump Risk Premiums

Abstract

Extreme events, such as market crashes, are important to market participants because

they have significant impacts on the welfare of investors. Such events are modeled as jumps

in the stochastic processes of asset prices. This paper proposes a semi-parametric approach

to examining jump dynamics, and finds that among popular specifications proposed in

the literature, the model with an autoregressive jump intensity and a mixture of the

exponential and generalized extreme value jump size distribution best characterizes the

jump dynamics. The paper also shows that jump risks carry significant premiums, and

the jump risk premiums are high when the growths of consumption and production in the

economy are low and when the credit risk and volatility are high.



1. Introduction

In the theoretical and empirical studies of asset pricing, understanding the asset price

dynamics and the risk premiums associated with various sources of the dynamics is a

central topic. Jumps, which are used to model extreme events, such as market crashes,

are essential components in the asset price dynamics. Because jumps are rare and not

directly observable, their properties are difficult to analyze. While approaches have been

proposed to characterize the jump dynamics in a growing literature, there is no consensus

on how jumps should be modeled. In this paper, we examine various specifications of

jump dynamics proposed in the literature, and shed light on how to model the jump

dynamics.

Two elements are essential in modeling the jump dynamics, the jump arrival intensity

process, i.e., the timing of jumps, and the distribution of jump sizes. Early studies on the

asset price dynamics and option pricing assume that the jump intensity is constant, for

example, Merton (1976). More recent studies assume that the conditional jump intensity

is an affine and increasing function of the diffusive variance of the asset returns, for

example, Bates (2000), Pan (2002) and Eraker (2004), among others. This is based on

the idea that jumps tend to occur when the diffusive variance is high. There is another

line of research which models the conditional jump intensity as a function of realized

past jumps and past jump intensity, based on the observations that large price changes

occur in clusters. This autoregressive type of models include Chan and Maheu (2002),

Maheu and McCurdy (2004), Yu (2004), Santa-Clara and Yan (2010), Christoffersen,

Jacobs and Ornthanalai (2012), Maheu, McCurdy and Zhao (2013), Aı̈t-Sahalia, Cacho-

Diaz and Laeven (2015), and Fulop, Li and Yu (2015). There is no consensus in the

literature on which types of models characterize the jump dynamics better and whether

they significantly improve upon the models with the constant jump intensity. Pan (2002)

and Eraker (2004) find that allowing the dependence of conditional jump intensity on

diffusive variance improves the performance of pricing the S&P 500 index options upon
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the constant jump intensity model, however, Andersen, Benzoni and Lund (2002) find

that when fitting the models to the S&P 500 index returns, the coefficient on the diffusive

variance in the affine specification of jump intensity is not significant. Li and Zhang (2016)

examine the issue using a nonparametric approach and find no relationship between the

conditional jump intensity and diffusive variance for many indexes and stocks. Bates

(2000) finds that there is no relation between the conditional jump intensity and diffusive

variance under the physical probability, but there is a positive relation under the risk-

neutral probability. In addition, the jump size is typically assumed to be independent

of the conditional jump intensity, and to follow a distribution with fixed parameters.

The normal and double exponential distributions are the most commonly used.1 In this

paper, we examine which combinations of the jump intensity and jump size distribution

specifications fit the data better.

The properties of jumps are difficult to analyze also because jump dynamics can be

affected by the restrictions imposed on other components in the asset price dynamics.

The specifications of the stochastic volatility process are particulary important because

both volatility and jumps are measures of the magnitude of possible future price changes.

Recent studies have shown that many standard asset pricing models are mis-specified.

Jones (2003) finds that the square-root stochastic volatility model is incapable of generat-

ing realistic return behavior and the data are better represented by a stochastic volatility

model in the constant-elasticity-of-variance class or a model with a time-varying leverage

effect. Christoffersen, Jacobs and Mimouni (2010) find that a stochastic volatility model

with a linear diffusion term is more consistent with the data on the underlying asset and

options than a stochastic volatility model with a square-root diffusion term is. Li and

Zhang (2013) show that the affine drift of the diffusive volatility model is mis-specified

1In Andersen, Benzoni and Lund (2002), Bates (2000), Chan and Maheu (2002), Christoffersen, Jacobs
and Ornthanalai (2012), Eraker (2004), Maheu and McCurdy (2004), Maheu, McCurdy and Zhao (2013),
Pan (2002) and Santa-Clara and Yan (2010), the jump size is assumed to follow the normal distribution,
whereas in Aı̈t-Sahalia, Cacho-Diaz and Laeven (2015) and Kou (2002), the jump size is assumed to
follow the double exponential distribution.
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because the mean reversion is particularly strong at the high end of volatility. A robust

analysis of the jump dynamics requires mitigating the impacts of the mis-specification of

the stochastic volatility process.

This paper proposes an approach to estimating the jump dynamics and the associ-

ated risk premiums. Different from the approaches in the existing literature, we adopt a

two-step semi-parametric approach. In the first step, the diffusive volatility is estimated

by a jump-robust nonparametric approach. Since the analysis of the jump dynamics is

sensitive to the model specifications of the stochastic volatility process, the nonparametric

approach allows more robust inferences on the jump dynamics. In the second step, given

the estimated diffusive volatility, the specifications of the conditional jump intensity and

jump size distribution are estimated and tested. Our approach is applied to the daily

returns of the S&P 500 index from 1950 to 2014. We find that the autoregressive jump

intensity fits the data better than the constant and the affine jump intensities do. The

double exponential distribution works better than the normal distribution for modeling

the jump sizes. A mixture of the exponential distribution and the generalized extreme

value distribution further improves the fit. The improvement is due to the ability of the

generalized extreme value distribution to capture the fat tail of negative jumps. The jump

risk premiums are inferred from the differences between the expected value of a jump mea-

sure under the risk-neutral probability and its physical counterpart. A high value of the

jump measure indicates a high jump arrival intensity or jump size with a large magni-

tude or both. The jump measure under the risk-neutral probability is estimated from

the S&P 500 index option prices in a model-free manner, and the one under the physi-

cal probability is estimated from the best specification of the jump arrival intensity and

jump size distribution in the previous analysis. We find that the jump risk premiums are

positive and large on average, and are strongly related to the macroeconomic conditions.

In particular, the jump risk premiums are high when the growths of consumption and

production in the economy are low and when the credit risk and volatility are high.
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The rest of the paper is organized as follows. Section 2 discusses the specifications of

the jump intensity process and the jump size distribution, and the estimation methodol-

ogy. Section 3 presents the estimation results. Section 4 introduces the jump measure,

defines the jump risk premiums, and reports the empirical results on the jump risk pre-

miums. Section 5 concludes the paper.

2. Empirical Methodology

Suppose that under the physical probability, the log price of an asset, Su, is governed by

the following process,

dSu = µudu+
√
VudWu + ZudJu, (1)

where µu is the instantaneous drift, Vu is the instantaneous diffusive variance, Wu is the

Brownian motion, Ju is a Poisson process with time-varying and finite intensity λu, and

Zu is the jump size, independent of Wu and Ju. The focus of the analysis in this paper is

how to model Zu and λu, and the premiums associate with them.

Our estimation approach can be summarized as follows. First, we estimate Vu using

a nonparametric approach without assuming the dynamics of Vu. Since the restrictions

imposed on the dynamics of Vu inevitably affect the dynamics of Zu and λu, the non-

parametric approach to estimating Vu allows robust inferences on the dynamics of Zu and

λu. In the second step, given the estimated diffusive variance, we estimate some popular

specifications of the jump arrival intensity and jump size distribution, and compare these

specifications.

2.1. Specifications of Conditional Jump Intensity and Jump Size
Distribution

We introduce the specifications of conditional jump intensity and jump size distribution

considered in this paper. The conditional jump intensity characterizes the timing of jump
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arrivals. We consider three popular cases. The first is the constant jump intensity, i.e.,

λu = λ for all u, where λ ≥ 0. This is the simplest case, introduced by Merton (1976)

in the option pricing literature, to account for non-normality of the return distribution.

The second is the affine specification,

λu = λ0 + λ1Vu, (2)

where λ0 ≥ 0 and λ1 ≥ 0. The affine specification allows the time-varying jump intensity,

and is build upon the intuition that when the diffusive volatility is higher, jumps are more

likely to occur. The affine specification is popular because together with the square-root

process of Vu as in Heston (1993), it admits a closed-form solution of the option price,

for example, in Duffie, Pan, and Singleton (2000). The third is the autoregressive jump

intensity. We take the self-exciting jump process in the continuous-time as a presentative

model in this type.2 The stochastic process of the conditional jump intensity is given by

dλu = α(θ − λu)du+ βdJu, (3)

where α > 0, β ≥ 0, and θ ≥ 0. In this process, past jumps raise the conditional jump

intensity, and the magnitude of the effect is governed by β. It is able to generate a stronger

clustering effect in jump arrivals than the affine specification (2) does. α controls the mean

reversion speed of the conditional jump intensity. The unconditional jump intensity is

given by αθ/(α− β).

The jump size distribution characterizes the magnitudes of jumps. The jump sizes

and conditional jump intensities are assumed to be independent as in the literature. We

consider the following jump size distributions. The first is the most commonly used normal

distribution. The probability density function is given by

ν(x) =
1√
2π

exp

{
−(x− µZ)

2

2σ2
Z

}
, (4)

2The self-exciting jumps are considered by Aı̈t-Sahalia, Cacho-Diaz and Laeven (2015), Fulop, Li and
Yu (2015), among others. There are discrete-time autoregressive jump intensity models considered by
Maheu and McCurdy (2004) and Maheu, McCurdy and Zhao (2013), which empirically capture the same
effects, so we do not consider them separately here.
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where µZ is the mean jump size and σ2
Z is the variance of the jump size. The second

is the double exponential distribution, proposed in Kou (2002). The probability density

function is given by

ν(x) =

{
p
η1
exp{− x

η1
} if x ≥ 0

1−p
η2

exp{ x
η2
} if x < 0,

(5)

where p is the probability of a positive jump. η1 (η2) measures both the mean and variance

of sizes of positive (negative) jumps, with a greater value indicating a larger mean and

variance. The third is the mixture of an exponential distribution and a generalized extreme

value distribution. The generalized extreme value distribution is a natural candidate for

the purpose of modeling jump sizes. The Fisher-Tippett theorem proves that under weak

regularity conditions, the largest value in a sample drawn from an unknown distribution

will converge in distribution to one of three types of probability laws, all of which belong

to the generalized extreme value family. The probability density function is given by

ν(x) =

{
p
η
exp{−x

η
} if x ≥ 0

1−p
kξ

exp{−(1 + −x−k
k

)−1/ξ}(1 + −x−k
k

)−1−1/ξ if x < 0.
(6)

The mixture distribution is motivated by the fact that the left tail of the return distri-

bution is generally thicker than the right tail.3 The distribution of the sizes of negative

jumps is modeled by a restricted version of the generalized extreme value distribution,

where k is the location parameter, and ξ is the shape parameter, which controls the be-

havior of the tail of the distribution. A higher value of ξ gives a thicker tail, and ξ is

constrained to be less than 0.5 to ensure that the variance of the distribution is finite.

The scale parameter in the generalized extreme value distribution is restricted to be kξ

so that the support of this distribution is (−∞, 0). Figlewski (2010) uses the generalized

extreme value distribution to model the tails of the risk-neutral distribution of the S&P

500 index returns.

3We also consider the case of double generalized extreme value distribution. The empirical results
suggest that the double generalized extreme value distribution does not improve upon the mixture dis-
tribution because the right tail of the return distribution is not as thick as the left tail. Therefore, we do
not report the results for this case.
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2.2. Estimation Methodology

The discretized version of (1) is given by,

Rt+1 = St+1 − St = µt +
√
Vtεt+1 +

Jt+1∑
i=1

Zi, (7)

where εt+1 is a standard normal random variable, Jt+1 is the number of jumps occurred in

(t, t+1] with the conditional jump intensity λt, and Zi for i = 1, · · · , Jt+1 are independent

and identically distributed with the probability density function ν(·). Since the time-series

variation of the expected return is difficult to estimate, we simply restrict the expected

return to be a constant µ such that µt = µ−λtZ̄−0.5Vt, where Z̄ is the average jump size.

For notational convenience, the unit of time is chosen to be consistent with the frequency

of the data used.

The densities of Rt+1 conditional on Jt+1 and Vt can be calculated easily. Conditional

on Jt+1 = 0, the density is given by,

f(Rt+1|Jt+1 = 0, Vt) = ϕ(Rt+1;µt, Vt), (8)

where ϕ(·; a, b) denotes the normal density with mean a and variance b. Conditional on

Jt+1 ≥ 1, Rt+1 is the sum of a normal random variable and Jt+1 identically distributed

jump sizes, all independent with each other. The probability density function does not

always have a closed-form expression, but it can be numerically evaluated. For example,

the density conditional on Jt+1 = 1 is given by,

f(Rt+1|Jt+1 = 1, Vt) = (ϕ(·;µt, Vt) ∗ ν(·))(Rt+1), (9)

where (ϕ ∗ ν) denotes the convolution of ϕ(·) and ν(·). The density conditional on Jt+1

for Jt+1 > 1 can be evaluated with additional convolutions. Then, the density of Rt+1

conditional on Vt is given by

f(Rt+1|Vt) =
∞∑
i=0

f(Rt+1, Jt+1 = i|Vt) =
∞∑
i=0

f(Rt+1|Jt+1 = i, Vt)Pr(Jt+1 = i|Vt), (10)
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where

Pr(Jt+1 = i|Vt) =
exp(−λt)λit

i!
, (11)

for i = 0, 1, · · · , is the probability of Jt+1 = i conditional on Vt. Given Vt, the parameters

governing the dynamics of λt and ν(·) are estimated by maximizing the log-likelihood

function
∑T−1

t=1 log[f(Rt+1|Vt)], where T is the number of observations. For the cases of

the constant jump intensity and the affine jump intensity in (2), the maximum likelihood

estimation is straight-forward since λt is a function of parameters and observed Vt. How-

ever, for the case of the self-exciting jump intensity in (3), jumps Ju are unobserved, which

complicates the estimation. We take the filtering approach to get around the problem.4

The discretized version of (3) is given by,

λt+1 = λt + α(θ − λt) + βJt+1. (12)

We use the filtered Jt+1, E[Jt+1|Vt, Rt+1], to replace the unobserved Jt+1 in the estimation,

where

E[Jt+1|Vt, Rt+1] =
∞∑
i=0

iPr(Jt+1 = i|Vt, Rt+1) =

∑∞
i=0 if(Rt+1, Jt+1 = i|Vt)

f(Rt+1|Vt)
, (13)

which can be calculated based on (10). Given the parameters and an initial value of λt for

t = 1, λt for t ≥ 2 can be estimated by replacing Jt+1 by E[Jt+1|Vt, Rt+1] in (12). Then,

the parameters and E[Jt+1|Vt, Rt+1] are estimated iteratively until they converge.

2.3. Diffusive Variance Estimation

We consider a nonparametric approach to estimating the instantaneous diffusive variance,

Vt, to make more robust inferences on the jump dynamics. The approach is termed the

exponentially weighted moving average with truncation. Li and Zhang (2016) compare

many instantaneous diffusive variance estimators proposed in the literature in terms of

4The filtering approach has been applied in Maheu and McCurdy (2004), Maheu, McCurdy and Zhao
(2013), and Christoffersen, Jacobs and Ornthanalai (2012), among others, for estimation the parameters
in the dynamics of asset prices.
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root-mean-square errors, and find that this approach has the smallest errors. The esti-

mator is defined as,

V̂t =

∑M−1
i=0 ψiR2

t−i1{cL≤|Rt−i|≤cU}∑M−1
i=0 ψi1{cL≤|Rt−i|≤cU}

, (14)

where 1{·} is an indicator function,M is a window-size, ψ ∈ (0, 1) is a smoothing constant,

chosen such that the following log-likelihood function is maximized,
∑T−1

t=M(− log V̂t −

R2
t+1/V̂t)1{|Rt+1|≤cU}, and T is the number of return observations in the sample. If ψ is not

too close to one, the weights of past return observations decay quickly and the window-

size M is not crucial. Experiment with data indicates that this is the case, so we simply

set M = 126, i.e., past return observations of the recent a half year. This estimator

is similar to the commonly used exponentially weighted moving average estimator of

return variance. However, because of the upper truncation, cU , it measures the diffusive

component of variance, i.e., the variance due to jumps is excluded. The lower truncation,

cL, ensures that the expected diffusive variance is the same as the one without truncations.

Specifically, cU = 5
√
BV, where BV is the daily bipower variation of Barndorff-Nielsen

and Shephard (2004, 2006) based on the entire sample. The lower truncation is set to be

the value such that E(x2) = E(x2|c2L ≤ x2 ≤ c2U), where x follows the normal distribution

with mean zero and variance BV.

3. Estimation Results

We apply the methodology to the S&P 500 index returns. The index is one of the

most representative indexes of the U.S. equity market, and its dynamics are examined

extensively in the literature. The daily level of the S&P 500 index from January 1950 to

December 2014 is downloaded from the Yahoo! Finance.

The time-series plot of the estimated annualized diffusive volatility,
√
V̂t, based on the

expression (14) and daily return data, is shown in Figure 1, where the optimal smoothing

parameter, ψ, is 0.948. There are substantial time-series variation in
√
V̂t. The diffusive
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volatility is high around the failure of the Franklin National bank in 1974, the market

crash in 1987, the Worldcom and Enron bankruptcy in 2002, the subprime debt crisis in

2008-2009, the European sovereign debt crisis in 2010, and the U.S. debt ceiling crisis in

2011. For the rest of the periods, the diffusive volatility is relatively low.

Figure 1 here

The summary statistics of daily log returns with large magnitudes, Rt, are given in

Table 1. The large returns are defined relative to the diffusive volatility,
√
V̂t. The results

suggest that large negative returns are in general more frequent and of greater magnitudes

than positive ones. For example, observations of Rt < −4
√
V̂t account for 0.21% of the

entire sample with an average of -5.038%, and those of Rt > 4
√
V̂t only account for 0.099%

with an average of 4.477%. These returns are very likely to be modelled as jumps because

when jumps are not allowed, daily returns follow the normal distribution with mean zero

and standard deviation
√
V̂t approximately, and daily returns exceeding 4

√
V̂t or below

−4
√
V̂t only account for 0.003%. The most extreme negative daily return occurs during

the 1987 market crash with the magnitude exceeding 20%.

Table 1 here

The parameter estimates of various models are given in Table 2. There are three types

of conditional jump intensity specifications, and three types of jump size distributions,

totalling nine models. For the ease of interpretation, the estimates are annualized. The

first is the model with the constant jump intensity and the normal jump size distribution,

denoted by C-NM, where the first letter indicates the type of the conditional jump inten-

sity and the last two letters indicate the type of the jump size distribution. The annual

jump intensity is 4.78, the mean jump size is -0.0072, and the standard deviation of the

jump size is 0.023. These estimates are in line with the literature. 5 The negative average

5For example, the corresponding estimates in Andersen, Benzoni and Lund (2002) are 3.45, 0 and
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jump size captures the fact that large negative returns are more frequent and of greater

magnitudes than large positive returns. For the model with the constant jump intensity

and the double exponential jump size distribution, denoted by C-DE, the annual jump

intensity is 10.17, much higher than that from the model C-NM. p is less than 0.5, which

captures the fact that large negative returns are more frequent than large positive returns.

However, η1 > η2 suggests that conditional on a jump, the size of a positive jump tends

to be greater than that of a negative jump. The annual jump intensity implied by the

model with the constant jump intensity and the mixture of exponential and generalized

extreme value jump size distribution, denote by C-GE, is 11.7, the highest among the

models with the constant jump intensity. Same as that implied by the model C-DE, p

is less than 0.5, suggesting that negative jumps are more frequent than positive jumps.

The mean of negative jumps is 1.13%, smaller than that of positive jumps of 1.66%, and

the standard deviation of negative jumps is 2.58%, greater than that of positive jumps of

1.66%.

Table 2 here

For all the models with the affine jump intensity, the conditional jump intensity is

found to be positively related to the diffusive variance. One standard deviation increase

in the diffusive variance leads to an increase in the annual jump intensity of 4.41, 6.83,

and 8.02, for the models A-NM, A-DE, and A-EG, respectively, where A indicates the

affine jump intensity. The averages of annual jump intensity implied by models A-NM,

A-DE and A-EG are 6.32, 12.34 and 15.1, respectively, higher than those implied by

corresponding models with the constant jump intensity. The parameters of the jump

size distributions for the affine jump intensity models are comparable with those for the

models with the constant jump intensity. For the models with the autoregressive jump

intensity, the positive and significant estimate of β indicates the important role of past

0.015 for a parametric model with the same jump intensity and jump size specifications and the square-
root stochastic volatility process. The corresponding estimates in Eraker, Johannes and Polson (2003)
are 1.66, -0.0175 and 0.0288 for the same model.
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jumps in determining the conditional jump intensity. A jump in the past increases the

annual jump intensity by 126.5, 179.2, and 157.6 for the models R-NM, R-DE, and R-EG,

respectively, where R indicates the autoregressive jump intensity. The estimate of α is

also large, suggesting that the conditional jump intensity reverts to the unconditional

mean quickly and the impacts of past jumps are short-lived. The averages of annual jump

intensity are 6.97, 17.14 and 24.75 for the models R-NM, R-DE, and R-EG, respectively,

even higher than the corresponding models with the affine jump intensity. To compare the

two types of time-varying conditional jump intensities, we plot the estimated conditional

jump intensity, λ̂t, for the models A-EG and R-EG across time in Figure 2. For the model

A-EG, the behavior of λ̂t is similar to that of V̂t since λ̂t is an affine function of V̂t. λ̂t

is persistent and ranges from less than 10 to below 90. For the model R-EG, λ̂t is less

persistent and moves quickly across time. The range of λ̂t is also much wider, and the

highest λ̂t is near 340. p for both the double exponential distribution and the mixture

distribution is still less than 0.5 for the models with the autoregressive jump intensity. κ

and ξ for the model R-EG are notably smaller than those for the models C-EG and A-EG,

which suggests that the mean, standard deviation, and thickness of the tail of each jump

are smaller when jumps are allowed to be clustered strongly.

Figure 2 here

The last column of Table 2 reports the log-likelihood, Akaike information criterion

(AIC) and Bayesian information criterion (BIC) for each model. The results of the log-

likelihood indicate that for the same jump intensity specification, the mixture of the

exponential and the generalize extreme value distribution fits the data best, followed by

the double exponential distribution and the normal distribution. For the same jump size

distribution, the autoregressive jump intensity fits the data best, followed by the affine

jump intensity and the constant jump intensity. Models with more parameters usually fit

the data better, however, they are not necessarily preferred because they are less parsi-

mony and may not perform better out-of-the-sample. The models with different numbers
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of parameters can be compared based on their information criteria, which penalize models

with more parameters. The penalty is greater for BIC than for AIC. The results suggest

that after controlling for the number of parameters, R-EG, the model with the largest

number of parameters, still outperforms other models in fitting the return data.

We further examine whether the improvement of fits is from the extreme returns or

from returns with smaller magnitudes. To do so, we calculate the average log-likelihood

for days with extreme returns and for days with returns of smaller magnitudes. The results

in Table 3 shows that in general the average value of log-likelihood is higher for the models

with the autoregressive jump intensity than models with the constant jump intensity or

the diffusive jump intensity. This suggests that the autoregressive jump intensity fits

the return data better than the other two jump intensity specifications do regardless the

magnitudes of the return. The mixture of the exponential and the generalize extreme value

jump size distribution fits both the extreme negative returns and returns with smaller

magnitudes better than the normal and the double exponential jump size distributions do

regardless except for moderately large positive returns in a few cases. Overall, the results

suggest that the model with the autoregressive jump intensity and the mixture of the

exponential and the generalize extreme value jump size distribution fit both the extreme

returns and returns with smaller magnitudes better than other specifications do.

Table 3 here

To highlight the differences in fitting the extreme returns among various models, in

Figure 4, we plot λ̄ν(Z) against the jump size, Z, where λ̄ =
∑T

t=1 λ̂t, is the average

daily jump intensity, ν(Z) is the probability density function of the jump size. Note

that the x-axis starts at -0.06 and 0.06 to highlight the density of jump sizes with large

magnitudes. The figure shows the average daily intensity of jumps with various sizes. For

negative jumps, the normal distribution implies more jumps of smaller magnitudes than

the other two do, and the mixture of the exponential and the generalized extreme value
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distribution has the fattest tail and implies most extreme negative jumps. The intensity

of positive jumps is lower than that of negative jumps. Since the right tails from the

double exponential distribution and the mixture distribution are both modeled by the

exponential distribution, they behave very similarly. The normal distribution also implies

a lower higher intensity for positive jumps than the other two distributions do regardless

the jump sizes.

Figure 3 here

In Figure 4 and 5, we plot λ̂(10)ν(Z) and λ̂(90)ν(Z) for the models with time-varying

jump intensity, where λ̂(10) and λ̂(90) denote the 10th and 90th percentiles of the time-

series distribution of λ̂t, respectively. These two figures show the variation of the left tail

and right tail due to the variation of jump intensity. The thickness of the tails implied by

models with the autoregressive jump intensity varies more than that implied by models

with affine jump intensities. This is the case because the autoregressive jump intensity

has a greater time-series variation.

Figure 4 here

Figure 5 here

4. Jump Risk Premiums

In this section, we examine the dynamics of jump risk premiums. The jump risk premiums

are inferred from the differences between the expected value of a jump measure under the

risk-neutral probability, and its physical counterpart, estimated from the best specification

discussed above. Intuitively, jump risk premiums are the prices that investors pay to hedge

against the jump risks. We use the jump measure considered in Carr and Wu (2003) and

Bollerslev and Todorov (2011). The measure under the risk-neutral probability is based
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on the idea that short-maturity out-of-the-money options are worthless unless a jump

occurs before expiration.

Specifically, the right-tail measure under the risk-neutral probability, R̃Tt(k), is defined

as,

R̃Tt(k) =
1

T − t
Ẽt

(∫ T

t

λ̃udu

)∫ +∞

−∞
max(ex − ek, 0)ν̃(x)dx, (15)

for k > 0, where k = ln(K/Ft), K is the strike price, and Ft is the futures price, λ̃u and

ν̃(x) are the risk-neutral conditional jump intensity and probability density function of

jump size, respectively, and Ẽt denotes the expectation under the risk-neutral probability

conditional on time-t information. The left-tail measure under the risk-neutral probability,

L̃Tt(k), is defined similarly as,

L̃Tt(k) =
1

T − t
Ẽt

(∫ T

t

λ̃udu

)∫ +∞

−∞
max(ek − ex, 0)ν̃(x)dx, (16)

for k < 0. The jump measures under the risk-neutral probability can be estimated from

options prices in a model-free manner. For short-maturity options, i.e., T ↓ t, it can be

shown that

R̃Tt(k) ≈ ert,TCt(K)

(T − t)Ft

(17)

L̃Tt(k) ≈ ert,TPt(K)

(T − t)Ft

, (18)

where rt,T is the risk-free rate from t to T , and Ct(K) and Pt(K) are the prices of a call

and a put with strike K at t, respectively.

The jump risk premiums are defined as,

RJPt(k) = R̃Tt(k)− RTt(k) (19)

LJPt(k) = L̃Tt(k)− LTt(k), (20)

where RTt(k) and LTt(k) are the counterparts of R̃Tt(k) and L̃Tt(k) under the physical
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probability. They can be approximated by,

RTt(k) ≈ λt

∫ +∞

−∞
max(ex − ek, 0)ν(x)dx (21)

LTt(k) ≈ λt

∫ +∞

−∞
max(ek − ex, 0)ν(x)dx, (22)

and the approximation error decreases to zero when T ↓ t.

We estimate R̃Tt(k) and L̃Tt(k) from the daily data on the S&P 500 index option prices

from January 1996 to January 2013. The option data and the risk-free rate are both from

the Optionmetrics. We choose the closest-to-maturity options with at least 8 calendar

days to expiration, and k = ln 1.1 for R̃Tt(k) and k = ln 0.9 for L̃Tt(k).
6 Specifically,

we calculate the Black-Scholes implied volatilities from out-of-the-money options for that

maturity, and estimate the implied volatility for the strike K = Fte
k nonparametrically

using the local linear regression, where the futures price Ft is inferred from the put-call

parity and the at-the-money call and put prices. Then, we calculate options prices Ct(K)

and Pt(K) from the fitted implied volatilities. Based on the estimation results for the

model R-EG, which performs the best among the models we consider, we calculate the

jump measures under the physical probability, RTt(k) and LTt(k), according to (21) and

(22), where k is chosen the same as for R̃Tt(k) and L̃Tt(k).

The time-series plots of the annualized jump risk premiums, RJPt(k) and LJPt(k), are

shown in Figure 6. Since R̃Tt(k) and L̃Tt(k) are in general greater than RTt(k) and LTt(k),

the jump risk premiums RJPt(k) and LJPt(k) are positive on average. Occasionally,

RJPt(k) and LJPt(k) become slightly negative. RJPt(k) and LJPt(k) usually move in

the same direction. They are persistent across time. For most of the time, RJPt(k) and

LJPt(k) are low. There are spikes from time to time, and they are particularly high during

the crisis period of 2008-2009. LJPt(k) is greater than RJPt(k) in general, however, their

differences become narrow during 2008-2009.

6Bollerslev and Todorov (2011) show that under these choices, the approximation errors in (17) and
(18) are small.
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Figure 6 here

In the following analysis, we relate the jump risk premiums to some widely used

macroeconomic variables in the asset pricing literature. These variables include the

monthly growth rate of the personal consumer expenditures, PCEt, the monthly growth

rate of the industrial production, IDPt, the monthly growth rate of the consumer price

index, CPIt, all seasonally adjusted, the term spread, TSDt, measured by the differences

in the yields on 10-year treasury bonds and 3-month treasury bills, and the credit spread,

CSDt, measured by the Moody’s seasoned Aaa corporate bond yield relative to the yield

on 10-year treasury bonds. All the data are from the Federal Reserve Economic Data

(FRED) website. We also include the annual diffusive variance, V̂t, and the annual jump

intensity λ̂t, estimated previously, since they are considered as state variables driving the

asset price dynamics in the option pricing literature.

The regression specification is given by,

JPt+1 = β0 +
7∑

i=1

βiXt,i + β8JPt + εt+1 (23)

where JPt is RJPt or LJPt, the jump risk premium measured at the end of month t, and

Xt = (PCEt, IDPt,CPIt,TSDt,CSDt, V̂t, λ̂t). We use the monthly data because PCEt,

IDPt and CPIt are available at the monthly frequency. We also control for the lagged

RJPt or LJPt since they are persistent.

The correlations of the variables used in the regressions are shown in Table 4. RJPt+1

and LJPt+1 are negatively correlated with PCEt, IDPt and CPIt, suggesting that the jump

risk premiums tend to be high when the consumption, production and inflation are low,

i.e., the economy is not in good conditions. RJPt+1 and LJPt+1 are positively correlated

with CSDt, V̂t and λ̂t, suggesting that the jump risk premiums tend to be high in the

period of high credit risk, high volatility and high jump intensity. RJPt+1 and LJPt+1 are

also positively correlated with the term spread, TSDt. RJPt+1 and LJPt+1 themselves are

strongly positively correlated. Many of the macroeconomic variables are highly correlated,

17



in particular the pairs of V̂t and CSDt, and of CSDt and TSDt.

Table 4 here

The regression results are shown in Table 5. Controlling for RJPt, PCEt and IDPt are

still negatively related to RJPt+1, and IDPt is also significant. The coefficient on CPIt

becomes positive and insignificant. The signs on TSDt, CSDt, V̂t, and λ̂t are still positive,

and both CSDt and V̂t are significant. The lagged RJPt is the most significant. In the

multiple regressions, IDPt and V̂t are still significant, TSDt becomes more significant,

but CSDt loses its explanatory power and the sign changes to negative. The regressions

results for LJPt+1 reported in Panel B are similar to those for RJPt+1, except that PCEt

is more significant, but IDPt, CSDt and V̂t are only marginally significant. PCEt is the

most significant one in the multiple regression. The lagged LJPt remains significant in

specifications. Overall, the results suggest that the jump risk premiums are related to the

macroeconomic conditions. The jump risk premiums tend to be high when the growths of

consumption and production are low and when the credit spread and volatility are high.

Table 5 here

5. Conclusion

We investigate the dynamics of jumps in asset prices in this paper. We propose a robust

approach to examining the popular specifications of the conditional jump intensity and

the jump size distribution in the literature. The approach is applied to the S&P 500 index

returns. The empirical results show that the model with the autoregressive jump intensity

fits the data better than that with the constant jump intensity or with the jump intensity

as an affine function of the diffusive variance. The autoregressive jump intensity model

captures the strong clustering effects in the jump intensity process that the other specifica-

tions do not. The mixture of the exponential and generalized extreme value distribution

18



characterizes the jump size better than the commonly used normal distribution or the

double exponential distribution. The generalized extreme value distribution is especially

useful in modeling the fat left tail of the return distribution. We further investigate the

premiums associated with the jump risks. The premiums are defined as the differences in

the expected value of a jump measure under the risk-neutral probability and the physical

probability. We find that jump risks carry significant premiums which are closely related

to the macroeconomic conditions. In particular, the jump risk premiums are high when

the growths of consumption and production in the economy are low and when the credit

risk and volatility are high.
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Table 1
Summary Statistics of Large Returns
This table reports the frequency (freq), mean, standard deviation (std), skewness (skew) and kurtosis

(kurt) of daily log returns with large magnitudes, Rt, of the S&P 500 index from July 1950 to December

2014. The large returns are defined relative to the diffusive volatility,
√
V̂t.

Rt+1 > 2
√
V̂t > 3

√
V̂t > 4

√
V̂t > 5

√
V̂t < −2

√
V̂t < −3

√
V̂t < −4

√
V̂t < −5

√
V̂t

freq(%) 2.742 0.382 0.099 0.031 3.340 0.684 0.210 0.080
mean(%) 2.200 3.352 4.477 6.223 -2.190 -3.267 -5.038 -6.590
std(%) 1.248 1.912 2.244 3.428 1.581 2.711 3.921 5.313
skew 2.566 2.180 1.983 0.504 -5.530 -3.966 -2.875 -2.370
kurt 13.873 8.408 5.935 1.524 59.642 26.448 13.687 8.123
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Table 2
Parameter Estimates
This table reports parameter estimates of the asset price processes and their standard errors in paren-

theses. The last column reports the value of log-likelihood function (LL), Akaike information criterion

(AIC) and Bayesian information criterion (BIC). C-NM, C-DE and C-EG are the models with the con-

stant jump intensity and the normal, double exponential and mixture of exponential and generalized

extreme value jump size distribution, respectively. A-NM, A-DE and A-EG are the models with the

affine jump intensity and these jump size distributions, and R-NM, R-DE and R-EG are the models with

the autoregressive jump intensity. The parameters for the jump intensity and µ are annualized.

model jump intensity jump size model fit

C-NM µ λ µZ σZ LL 55435
0.0586 4.783 -0.0072 0.0229 AIC -110862
(0.015) (0.77) (0.002) (0.003) BIC -110831

C-DE µ λ p η1 η2 LL 55465
0.0583 10.167 0.1119 0.0180 0.0107 AIC -110920
(0.015) (1.65) (0.043) (0.004) (0.001) BIC -110881

C-EG µ λ p η κ ξ LL 55489
0.0613 11.702 0.1106 0.0166 0.0075 0.4068 AIC -110965
(0.015) (1.82) (0.041) (0.004) (0.001) (0.030) BIC -110919

A-NM µ λ0 λ1 µZ σZ LL 55449
0.0622 1.855 219.07 -0.0068 0.0226 AIC -110887
(0.014) (0.76) (57.3) (0.002) (0.002) BIC -110849

A-DE µ λ0 λ1 p η1 η2 LL 55475
0.0616 5.437 339.23 0.1544 0.0151 0.0111 AIC -110937
(0.015) (1.56) (98.5) (0.056) (0.003) (0.001) BIC -110891

A-EG µ λ0 λ1 p η κ ξ LL 55498
0.0638 7.002 397.92 0.1145 0.0156 0.0076 0.4005 AIC -110982
(0.015) (1.75) (121) (0.043) (0.003) (0.001) (0.027) BIC -110929

R-NM µ α β θ µZ σZ LL 55503
0.0667 191.41 126.52 2.3615 -0.0049 0.0218 AIC -110995
(0.014) (31.5) (31.3) (0.619) (0.001) (0.002) BIC -110948

R-DE µ α β θ p η1 η2 LL 55544
0.0724 222.43 179.22 3.3296 0.2086 0.0131 0.0100 AIC -111074
(0.015) (31.8) (38.0) (1.159) (0.070) (0.003) (0.001) BIC -111021

R-EG µ α β θ p η κ ξ LL 55590
0.0794 188.80 157.56 4.0952 0.1311 0.0142 0.0069 0.3549 AIC -111163
(0.015) (25.6) (28.9) (1.221) (0.047) (0.003) (0.000) (0.020) BIC -111102
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Table 3
Model Performance
This table reports the average value of log-likelihood function, log[f(Rt+1|Vt)], for days with returns of

various magnitudes. The ranges of returns are given in the first column. C-NM, C-DE and C-EG are the

models with the constant jump intensity and the normal, double exponential and mixture of exponential

and generalized extreme value jump size distribution, respectively. A-NM, A-DE and A-EG are the

models with the affine jump intensity and these jump size distributions, and R-NM, R-DE and R-EG are

the models with the autoregressive jump intensity.

Rt+1 C-NM C-DE C-EG A-NM A-DE A-EG R-NM R-DE R-EG
∈ [−0.06, 0.06] 3.428 3.429 3.430 3.428 3.429 3.430 3.430 3.433 3.436
> 0.06 -3.097 -2.710 -2.750 -2.482 -2.296 -2.281 -1.789 -1.850 -1.851
> 0.075 -6.859 -5.825 -5.936 -5.634 -5.035 -5.006 -3.696 -3.829 -3.857
> 0.1 -6.587 -5.782 -5.877 -5.241 -4.821 -4.797 -4.231 -4.178 -4.126
< −0.06 -4.779 -4.734 -4.199 -4.067 -4.030 -3.623 -3.792 -3.851 -3.640
< −0.075 -7.963 -7.224 -5.508 -6.672 -6.005 -4.525 -5.827 -5.644 -4.436
< −0.1 -24.828 -19.137 -9.234 -23.537 -17.594 -8.523 -21.522 -16.846 -7.897
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Table 4
Correlations among Jump Risk Premiums and Macroeconomic Variables
This table reports the correlations among the following variables: the jump risk premiums
on the right tail and the left tail, RJPt+1 and LJPt+1, the monthly growth rate of the per-
sonal consumer expenditures, PCEt, the monthly growth rate of the industrial production,
IDPt, the monthly growth rate of the consumer price index, CPIt, all seasonally adjusted,
the term spread, TSDt, measured by the differences in the yields on 10-year treasury
bonds and 3-month treasury bills, the credit spread, CSDt, measured by the Moody’s
seasoned Aaa corporate bond yield relative to the yield on 10-year treasury bonds, the
diffusive variance, V̂t, and the jump intensity, λ̂t. All the variables are measured at the
end of month t.

RJPt+1 LJPt+1 PCEt IDPt CPIt TSDt CSDt V̂t
LJPt+1 0.926
PCEt -0.344 -0.355
IDPt -0.429 -0.358 0.270
CPIt -0.260 -0.270 0.376 0.049
TSDt 0.200 0.197 -0.143 -0.054 -0.100
CSDt 0.434 0.468 -0.267 -0.355 -0.210 0.485

V̂t 0.646 0.671 -0.356 -0.339 -0.326 0.207 0.680

λ̂t 0.394 0.444 -0.151 -0.094 -0.074 0.004 0.119 0.281
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Table 5
Jump Risk Premiums and Macroeconomic Variables
This table reports the coefficient estimates of the following regression,

JPt+1 = β0 +
7∑

i=1

βiXt,i + β8JPt + εt+1

where JPt is RJPt or LJPt, the jump risk premium on the right tail or the left tail, Xt =

(PCEt, IDPt,CPIt,TSDt,CSDt, V̂t, λ̂t), PCEt is the monthly growth rate of the personal consumer ex-

penditures, IDPt is the monthly growth rate of the industrial production, CPIt is the monthly growth

rate of the consumer price index, TSDt is the term spread, CSDt is the credit spread, V̂t is the annual

diffusive variance, and λ̂t is the annual jump intensity. The data are measured at the end of month t.

The heteroscedasticity and serial correlation consistent t-statistics based on the Newey and West (1987)

procedure with 3 lags are reported in the parentheses.

A. RJPt+1

Const PCEt IDPt CPIt TSDt CSDt V̂t λ̂t RJPt R2

0.006 -0.522 0.658 0.486
( 2.56) (-1.40) ( 7.22)
0.006 -1.008 0.622 0.545
( 3.54) (-2.57) ( 6.44)
0.003 0.311 0.706 0.480
( 1.91) ( 0.56) ( 6.65)
0.001 0.138 0.680 0.483
( 1.07) ( 1.69) ( 6.85)
-0.005 0.623 0.635 0.489
(-1.63) ( 2.24) ( 5.84)
-0.003 0.260 0.480 0.509
(-1.53) ( 2.50) ( 3.87)
0.000 0.041 0.632 0.507
( 0.09) ( 1.16) ( 7.62)
0.001 -0.136 -0.940 0.093 0.212 -0.492 0.221 0.040 0.408 0.592
( 0.20) (-0.59) (-2.96) ( 0.15) ( 2.15) (-1.67) ( 2.28) ( 1.63) ( 4.01)

B. LJPt+1

Const PCEt IDPt CPIt TSDt CSDt V̂t λ̂t LJPt R2

0.016 -1.291 0.708 0.572
( 4.30) (-2.31) (13.03)
0.013 -1.363 0.703 0.598
( 4.40) (-1.73) (12.92)
0.008 0.505 0.760 0.560
( 2.79) ( 0.62) (11.20)
0.007 0.191 0.738 0.562
( 2.36) ( 1.30) (11.88)
0.000 0.769 0.705 0.564
(-0.08) ( 1.68) (10.21)
0.005 0.269 0.616 0.567
( 1.90) ( 1.75) ( 6.52)
0.006 0.056 0.687 0.575
( 1.59) (0.89) (11.68)
0.010 -0.826 -1.180 0.464 0.243 -0.295 0.185 0.061 0.542 0.625
( 1.17) (-2.11) (-1.70) ( 0.49) ( 1.34) (-0.58) ( 1.08) ( 1.29) ( 5.32)
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Figure 1. Diffusive Volatility

This figure shows the time-series plot of the estiamted annualized diffusive volatility,
√
V̂t.
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Figure 2. Conditional Jump Intensity

This figure shows the time-series plots of the estimated annual conditional jump intensity,

λ̂t. The upper panel is from the model A-EG, the affine jump intensity and the mixture of

exponential and generalized extreme value jump size distribution, and the lower panel is

from the model R-EG, the autoregressive jump intensity and the mixture of exponential

and generalized extreme value jump size distribution.
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Figure 3. Jump Size Distribution (at the average jump intensity)

This figure plots λ̄ν(Z) as a function of Z, where Z is the jump size, λ̄ =
∑T

t=1 λ̂t, is

the average daily jump intensity, and ν(Z) is the probability density function of Z. The

left panels show the left tails of the densities, and the right panels show the right tails of

the densities. C-NM, C-DE and C-EG are the models with the constant jump intensity

and the normal, double exponential and mixture of exponential and generalized extreme

value jump size distribution, respectively. A-NM, A-DE and A-EG are the models of the

affine jump intensity and these jump size distributions, and R-NM, R-DE and R-EG are

the models of the autoregressive jump intensity.
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Figure 4. Jump Size Distribution (at the 10th percentile of the jump intensity)

This figure plots λ̂(10)ν(Z) as a function of Z, where Z is the jump size, λ̂(10) is the 10th

percentile of the distribution of the daily jump intensity, and ν(Z) is the probability

density function of Z. The left panels show the left tails of the densities, and the right

panels show the right tails of the densities. A-NM, A-DE and A-EG are the models of the

affine jump intensity and the normal, double exponential and mixture of exponential and

generalized extreme value jump size distribution, respectively, and R-NM, R-DE and R-

EG are the models of the autoregressive jump intensity and these jump size distributions.
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Figure 5. Jump Size Distribution (at the 90th percentile of the jump intensity)

This figure plots λ̂(90)ν(Z) as a function of Z, where Z is the jump size, λ̂(90) is the 90th

percentile of the distribution of the daily jump intensity, and ν(Z) is the probability

density function of Z. The left panels show the left tails of the densities, and the right

panels show the right tails of the densities. A-NM, A-DE and A-EG are the models of the

affine jump intensity and the normal, double exponential and mixture of exponential and

generalized extreme value jump size distribution, respectively, and R-NM, R-DE and R-

EG are the models of the autoregressive jump intensity and these jump size distributions.
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Figure 6. Jump Risk Premiums

This figure shows the time-series plots of the annual jump risk premiums. The upper

panel is the jump risk premium from the right tail of the return distribution, RJPt, and

the lower panel is the jump risk premium from the left tail of the return distribution,

LJPt.
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